

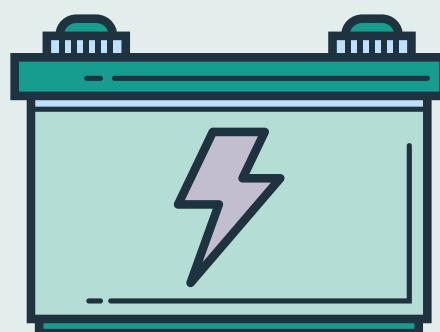
Lithium-Ion Batteries: Chemistry and Technological Trends

NON-FERTILIZER USES OF PHOSPHORUS - SERIES

JULY 2025

BATTERIES DRIVING THE ENERGY TRANSITION

As global energy systems transition to electrification, the demand for advanced energy storage technologies has surged. Lithium-ion batteries have emerged as the dominant solution, particularly in applications such as electric vehicles, portable electronics, and renewable energy storage. Phosphorus plays a critical role in the structure of lithium-ion batteries and in their functionality.



CORE COMPONENTS OF LITHIUM-ION BATTERIES

Lithium-ion batteries achieve high energy density and performance through a sophisticated interplay of four key components:

- Anode and Cathode (Electrodes):** These facilitate the reversible flow of lithium ions during charge and discharge cycles.
- Electrolyte:** A medium, either liquid or solid, that enables lithium ions to migrate between the electrodes.
- Separator:** A physical barrier that prevents direct contact between the anode and cathode while allowing ion transfer.
- Enclosure:** A casing that ensures mechanical stability and safety.

The exceptional energy storage capability of lithium is derived from its lightweight nature and high electrochemical potential, making it a cornerstone of modern battery technology.

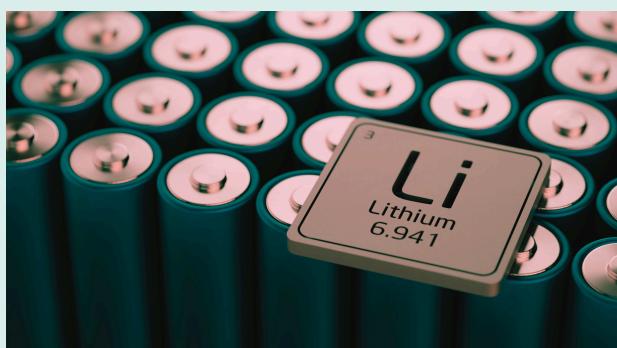
PHOSPHORUS IN LITHIUM-ION BATTERY CHEMISTRY

Phosphorus is indispensable in two critical components of lithium-ion batteries: **the electrolyte and the cathode**.

1. ELECTROLYTE: LITHIUM HEXAFLUOROPHOSPHATE

The electrolyte in lithium-ion batteries is typically composed of a salt known as **lithium hexafluorophosphate (LiPF₆)**, dissolved in a solvent. LiPF₆ facilitates efficient lithium-ion transport between the electrodes. Its production involves a sequence of chemical transformations starting with **white phosphorus**:

- White Phosphorus → Phosphorus Trichloride (PCl₃)
- Phosphorus Trichloride → Phosphorus Pentachloride (PCl₅)
- Phosphorus Pentachloride → Lithium Hexafluorophosphate (LiPF₆)


This process relies exclusively on white phosphorus, and no viable alternative currently matches the performance of LiPF₆ in electrolytes.

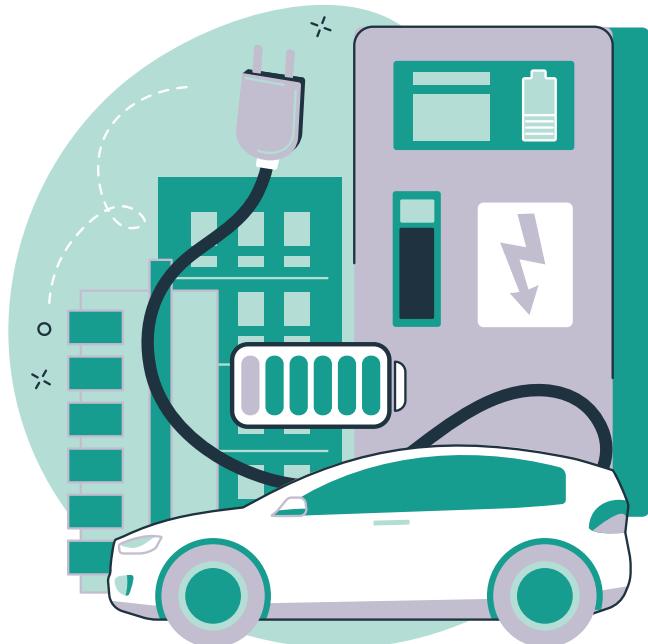
2. CATHODE MATERIALS: ENHANCING SAFETY AND STABILITY

The cathode is a critical storage site for lithium ions in the discharged state. Historically, **lithium cobalt oxide (LiCoO₂)** has been the dominant cathode material due to its energy density. However, its inherent safety risks—such as thermal runaway and potential battery fires—have driven the development of safer alternatives.

One prominent alternative is **lithium iron phosphate (LiFePO₄, or LFP)**. While LFP cathodes have a lower energy density compared to LiCoO₂, they offer:

- Enhanced thermal stability
- Reduced risk of battery fires
- Extended cycle life

LFP cathodes are synthesized from **purified phosphoric acid**, highlighting phosphorus's pivotal role. The adoption of LFP batteries is accelerating, particularly in China, where they are favored for their safety and reliability in electric vehicles and grid-scale storage systems.


REFERENCES

This factsheet is based on insights from the GPI report : [Non-Fertilizer Uses of Phosphorus, an Overview](#), prepared by Willem Schipper Consulting. If you wish to cite this factsheet, use the following : Global Phosphorus Institute (2025). Phosphorus Factsheet | GPI-FS#2 | JUNE 2025: Metal Treatment with Phosphorus Compounds. Ben Guerir, Morocco. If using content from this factsheet, please credit the Global Phosphorus Institute accordingly. For reproduction or translation inquiries, contact: communications@tgpi.org.

TRENDS AND FUTURE DIRECTIONS

The lithium-ion battery industry continues to evolve, driven by the need for higher performance, safety, and sustainability. The shift toward LFP technology underscores a broader trend prioritizing reliability over marginal gains in energy density. Concurrently, the reliance on phosphorus compounds emphasizes the importance of secure supply chains and innovations in phosphorus chemistry.

Lithium-ion batteries exemplify the intersection of advanced chemistry and technological innovation, with phosphorus playing a vital role in their efficiency and safety. As the world moves toward greater electrification, ongoing research and development will further optimize this indispensable technology, enabling a sustainable energy future.

ABOUT THE GLOBAL PHOSPHORUS INSTITUTE (GPI)

The Global Phosphorus Institute (GPI) is a global organization dedicated to ensuring the responsible use of phosphorus through cutting-edge science and stakeholder dialogue. With a holistic vision and worldwide participation, GPI fosters sustainable practices to advance phosphorus-related technologies and applications.

For more information, please contact communications@tgpi.org | © 2025 Global Phosphorus Institute. All rights reserved.